Las células vivas están bañadas por un líquido, el cual puede ser el líquido extracelular del cuerpo humano, el agua en donde nada un organismo unicelular como la amiba o las paredes celulares saturadas de agua de una planta joven. La membrana plasmática separa el citoplasma líquido de la célula de su ambiente líquido.
Los líquidos tienen algunas características las cuales son necesarias de comprender en el estudio del transporte por las membranas:
1. Un fluido es cualquier sustancia que puede moverse o cambiar de forma en respuesta a las fuerzas externas, sin romperse, se encuentre es estado líquido o gaseoso.
2. La concentración de moléculas en un fluido es una unidad de volumen determinada.
3. Un gradiente es la diferencia física entre dos regiones del espacio, de tal manera que las moléculas tienden a moverse de una región a otra. Las células con frecuencia encuentran gradientes de concentración, presión y carga eléctrica.
Debido a que el citoplasma de una célula es muy diferente del líquido extracelular, los gradientes de concentración, carga eléctrica y, en ocasiones de presión, atraviesan la membrana plasmática, la cual ejecuta dos tipos de movimiento:
Transporte pasivo.
Transporte activo.
Transporte pasivo, en el cual no se requiere gasto de energía por parte de la célula.
La Difusión es el movimiento neto de las moléculas en un fluido, desde las regiones de alta concentración hasta las de baja concentración producidas por el gradiente de concentración.
La difusión puede presentarse:
a) De una parte de un fluido a otra.
b) Por una membrana que separa los dos compartimientos que contienen líquidos.
Mientras mayor sea el gradiente de concentración, más rápida será la difusión.
Si no intervienen otros procesos, la difusión continuará hasta que se elimine el gradiente de concentración.
La difusión no puede impulsar las moléculas con rapidez a grandes distancias.
Muchas moléculas atraviesan las membranas plasmáticas por difusión, guiadas por las diferencias de concentración entre el citoplasma y el medio externo. Las moléculas cruzan la membrana plasmática en diferentes partes y con diferente rapidez, dependiendo de las propiedades de la molécula en cuestión. Por lo tanto, se dice que las membranas plasmáticas poseen permeabilidad diferencial: permiten el paso de algunas moléculas, o su difusión en forma más rápida que otras.
Agua, gases disueltos como el oxígeno, el bióxido de carbono) y moléculas solubles en lípidos (como el carbón etílico y la vitamina A) se difunden fácilmente al cruzar la bicapa de fosfolípidos. A este proceso se le denomina difusión.
Los líquidos tienen algunas características las cuales son necesarias de comprender en el estudio del transporte por las membranas:
1. Un fluido es cualquier sustancia que puede moverse o cambiar de forma en respuesta a las fuerzas externas, sin romperse, se encuentre es estado líquido o gaseoso.
2. La concentración de moléculas en un fluido es una unidad de volumen determinada.
3. Un gradiente es la diferencia física entre dos regiones del espacio, de tal manera que las moléculas tienden a moverse de una región a otra. Las células con frecuencia encuentran gradientes de concentración, presión y carga eléctrica.
Debido a que el citoplasma de una célula es muy diferente del líquido extracelular, los gradientes de concentración, carga eléctrica y, en ocasiones de presión, atraviesan la membrana plasmática, la cual ejecuta dos tipos de movimiento:
Transporte pasivo.
Transporte activo.
Transporte pasivo, en el cual no se requiere gasto de energía por parte de la célula.
La Difusión es el movimiento neto de las moléculas en un fluido, desde las regiones de alta concentración hasta las de baja concentración producidas por el gradiente de concentración.
La difusión puede presentarse:
a) De una parte de un fluido a otra.
b) Por una membrana que separa los dos compartimientos que contienen líquidos.
Mientras mayor sea el gradiente de concentración, más rápida será la difusión.
Si no intervienen otros procesos, la difusión continuará hasta que se elimine el gradiente de concentración.
La difusión no puede impulsar las moléculas con rapidez a grandes distancias.
Muchas moléculas atraviesan las membranas plasmáticas por difusión, guiadas por las diferencias de concentración entre el citoplasma y el medio externo. Las moléculas cruzan la membrana plasmática en diferentes partes y con diferente rapidez, dependiendo de las propiedades de la molécula en cuestión. Por lo tanto, se dice que las membranas plasmáticas poseen permeabilidad diferencial: permiten el paso de algunas moléculas, o su difusión en forma más rápida que otras.
Agua, gases disueltos como el oxígeno, el bióxido de carbono) y moléculas solubles en lípidos (como el carbón etílico y la vitamina A) se difunden fácilmente al cruzar la bicapa de fosfolípidos. A este proceso se le denomina difusión.
El agua, al igual que cualquier otra molécula, se mueve mediante difusión de regiones de alta concentración de agua a las de baja concentración. Sin embargo, la difusión del agua que cruza las membranas permeables diferenciales es tan importante, que se le ha dado un nombre especial: ósmosis (de la raíz griega osmos: impulso o empuje).
Una membrana con permeabilidad diferencial consta de una hoja impermeable perforada con pequeños poros que permiten que las moléculas de agua pasen por ellos, pero no moléculas mayores como el azúcar
Suponga que hacemos una bolsa de una membrana con permeabilidad diferencial, la llenamos con una solución de azúcar (soluto), la amarramos por el extremo y colocamos la bolsa en un vaso de agua pura; la bolsa se hinchará y si es lo suficientemente débil, estallará ¿Por qué?
Si usted pudiera ver las moléculas individuales, notaría que hay dos categorías de moléculas de agua en la solución de azúcar dentro de la bolsa, moléculas de agua “libres”, separadas de los azúcares, y moléculas de agua “ligadas”, unidas a los azúcares mediante puentes de hidrógeno.
En el agua pura que se encuentra fuera de la bolsa, claro está que sólo hay moléculas de agua libre que pueden difundir por los poros de la membrana, pero las moléculas de agua ligadas no, porque están unidas, al menos temporalmente, a los voluminosos azúcares. Por lo que la concentración de moléculas de agua libres es menor dentro de la bolsa que el agua fuera de la misma.
Este gradiente de concentración del agua favorece el movimiento de las moléculas de agua libres desde el agua pura que se encuentra fuera de la bolsa hasta la solución de azúcar dentro de la misma. La bolsa se hincha conforme más moléculas de agua entran a ella, en comparación con las que la abandonan. El azúcar de ninguna manera puede escaparse, de tal forma que la concentración de agua libre dentro de la bolsa siempre es más baja que el agua pura fuera de ella.
Debido a que todas las células contienen sales disueltas, proteínas, azúcares, etc., el flujo de agua por la membrana plasmática depende de la concentración de agua en el líquido que baña las células. Los fluidos extracelulares de los animales generalmente son isotónicos (“de la misma fuerza”) hacia el interior de las células corporales; esto es, la concentración de agua es igual dentro o fuera de la misma, por lo tanto, no hay una tendencia neta del agua, ya sea a entrar o salir de las células.
Si una célula se encuentra en una solución cuya concentración de soluto sea mayor que la de su citoplasma (esto es, si la solución tiene una concentración de agua menor) el agua de la célula saldrá por ósmosis.
La célula se encogerá hasta que las concentraciones de agua dentro y fuera se igualen. El medio que hace que el agua salga por ósmosis recibe el nombre de hipertónico (“de mayor fuerza”)
Por el contrario, si la solución o medio externo tiene poco o ningún soluto (más moléculas de agua “libre”), el agua entrará a la célula, haciendo que se ponga turgente (hinche). La solución que hace que entre agua por ósmosis recibe el nombre de hipotónica (“de menor fuerza”)
La ósmosis a través de las membranas es importante para el funcionamiento de muchos sistemas biológicos incluyendo la absorción de agua por las raíces de la planta, la del agua de la dieta y la reabsorción de agua y minerales en los riñones.
El Transporte activo, requiere energía, ya que las sustancias se mueven en contra de los gradientes de concentración, carga eléctrica o presión.
Todas las células necesitan mover algunos materiales por sus membranas plasmáticas en contra de los gradientes de difusión. Cada célula requiere algunos nutrimentos que están en menor concentración en el medio externo que en el citoplasma. La difusión ocasionaría que la célula perdiera y no ganara esos nutrimentos.
Otras sustancias, como los iones de sodio y calcio en nuestras neuronas, necesitan mantenerse a más bajas concentraciones dentro de las células que en el fluido extracelular. Cuando estos iones se difunden dentro de la célula, deben bombearse hacia afuera nuevamente en contra de sus gradientes de concentración.
En el transporte activo, las proteínas de membrana utilizan la energía celular para mover las moléculas individuales y cruzar la membrana plasmática, generalmente en contra de su gradiente de concentración. Las proteínas de transporte activo atraviesan la membrana y tienen dos sitios activos.
Un sitio activo reconoce una molécula en particular y se une a él; y otro sitio (siempre en el lado interior de la membrana) se une a una molécula portadora de energía, generalmente ATP.
Las proteínas de transporte activo con frecuencia reciben el nombre de bombas, en una analogía con las bombas de agua, porque utilizan energía para mover moléculas en contra de un gradiente de concentración.
Las células pueden obtener líquidos o partículas, especialmente proteínas grandes o microorganismos completos como las bacterias, mediante un proceso llamado endocitosis.
Durante al endocitosis, la membrana plasmática engloba la partícula o la gota de líquido y emite un saco membranoso denominado vesícula, con la partícula dentro la lleva al interior del citoplasma.
Se distinguen tres tipos de endocitosis, basados en el tamaño de la partícula obtenida y el método de obtención.
En la pinocitosis o endocitosis de fase líquida, una parte muy pequeña de la membrana plasmática se hunde, conteniendo fluido extracelular, y lo introduce en el citoplasma como una pequeña vesícula. La pinocitosis mueve una gota de fluido extracelular contenida dentro de la parte que se hunde hacia el interior de la célula.
La célula puede captar ciertas moléculas (por ejemplo colesterol) más eficientemente por el proceso conocido como endocitosis mediada por receptor. La mayor parte de las membranas plasmáticas cuenta con muchos receptores proteicos en sus superficies externas, cada uno con un sitio de unión para una molécula de nutrimento en particular
Los receptores se mueven por la membrana fosfolipídica y se acumulan en depresiones de la membrana plasmática llamadas fosas cubiertas. Si la molécula correcta se pone en contacto con un receptor proteico en una de esas fosas cubiertas, se fija al sitio de unión. La fosa cubierta se profundiza en una bolsa en forma de U que finalmente queda dentro del citoplasma como una vesícula cubierta. Tanto el complejo de nutrimento-receptor como un poco de fluido extracelular quedan dentro de la célula en la vesícula cubierta.
La Fagocitosis se utiliza para captar partículas grandes, incluso microorganismos completos. Una Amoeba detecta otro microorganismo, por ejemplo, a un Paramecium, emite extensiones de su membrana superficial, llamadas pseudópodos (falso pie).
Los pseudópodos rodean al Paramecium, sus extremos se fusionan y la presa es llevada al interior de la Amoeba para su digestión.
La vesícula restante, llamada vacuola alimenticia, se fusiona con lisosomas cuyas enzimas digieren a la presa.
Los leucocitos también utilizan la fagocitosis y la digestión intracelular para englobar y destruir bacterias que invaden nuestro organismo.
Lo contrario de la endocitosis es la exocitosis (“fuera de la célula”), que con frecuencia es utilizada por parte de las células para deshacerse de materiales no deseados, productos de desecho de la digestión o para secretar materiales, que pueden ser hormonas, hacia el fluido extracelular.
Durante la exocitosis, una vesícula creada por el aparato de Golgi se mueve a la superficie celular, en donde la membrana de la vesícula se fusiona con la membrana plasmática. La vesícula se abre al fluido extracelular y su contenido se difunde hacia fuera.